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1. Executive Summary 
Black ice is a thin coating of glazed ice on roadways or other transportation 

surfaces.  Black ice has identical appearance with black pavement and wet road, and it 
often forms during calm weather. It is highly transparent and thus difficult to see. Black 
ice usually forms at night or early morning, first on bridges and overpasses (due to their 
elevated nature and being exposed on all sides), then on the roads as temperatures 
continue to drop. 

Black ice is especially hazardous and is a factor in many car accidents. Black ice 
is deadly, causing numerous accidents each year in Oklahoma and many other states in 
U.S.  According to the Department of Transportation, icy pavement causes nearly 
200,000 auto crashes annually accounting for over 10% of all weather related crashes in 
the U.S.  An average of 700 fatalities and over 65,000 injures occur annually due to icy 
pavement. 

Unfortunately, the current static road-side warning signs (such as “Ice May Form 
on Bridge”) simply could not draw enough attention from drivers. Before the presence of 
dangerous level of black ice is reported and authorities respond, a number of ice-caused 
accidents could have already happened. Flashing signals with a reduce speed limit are 
much more effective than static signs to draw drivers’ attention and reduce traffic 
accidents. In the proposed black ice detection and warning system, once the sensor 
system detects ice formation, yellow lights will start to flash to warn drivers of black ice 
ahead, and red lights could be turned on by authorized officers to close lanes or read 
sections in case of emergency. The proposed remote-controlled black-ice detection and 
warning system could greatly reduce the number of accidents caused by black ice and 
save hundreds of lives each year.  

A major obstacle to widely implement the black ice detection and warning system 
is that current available sensors specific for black ice detection are too expensive. 
Typically they cost more than $1,000 per unit. So, it is economically impractical to adopt 
existing ice sensors for black ice detection across Oklahoma. To tackle this challenge, 
one of the objectives of this project is to develop a functionally competent and 
economically feasible sensing system for black-ice detection by using regular 
temperature, humidity, and light sensors, which are much more viable in terms of cost 
with less than $100 per unit, to replace expensive ice sensors. If successful, those 
sensors can be widely applied on bridges and overpasses with a low cost to reduce ice-
caused accidents in Oklahoma as well as the nation.  

In this project, we develop a prototype decision support system (DSS) to predict 
and detect black ice formation and pin point dangerous road sections.  To reduce 
accidents caused by back ice, a wireless controlled module control would activate ice-
warning and lane-closure signals and lights remotely. The DSS will help Oklahoma 
Department of Transportation (ODOT) and Oklahoma Department of Emergency 
Management (OEM) make prompt and effective decisions to reduce the number of traffic 
accidents caused by ice. 
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2. Development of a Black Ice Prediction Model 
 

2.1 Introduction 
The formation mechanisms and correlated diagnostic and prognostic modeling of 

black ice have been rigorously studied internationally. With the assistance of elaborate 

roadside observation networks, or Road weather information systems (RWiS), European 

nations such as the Czech Republic, Sweden, Denmark, and the United Kingdom have 

developed diagnostic and prognostic road icing models based on both meteorological 

parameterization and roadside observations. [24][11][14][7] Efforts have been 

characterized by sophisticated RWiS infrastructure, but limited forecasting capabilities. 

[29] However, post-event analyses have resulted in successful meteorological 

parameterizations of formation mechanisms. [29][11][14] These parameterizations have 

not been used to their fullest capabilities in the past due to limited spatio-temporal 

availability of efficiently processed forecast data. 

As such, the objective of the present study is to utilize previously tested 

parameterizations of hoar frost, freezing fog, and frozen precipitation in hopes of 

developing an efficient, comprehensive black ice forecasting model. Through thorough 

literature review and careful subsequent analysis of the science behind each 

parameterization, various parameters were accepted, modified, or replaced altogether. 

The National Digital Forecast Database (NDFD), Oklahoma Mesonet, and ASOS network 

are utilized to provide diagnostic and prognostic data ingested by the model. Following 

complete methodological analysis, a risk analysis of black ice is performed for various 

regions of Oklahoma, following NOAA-defined climatological regions. 

2.2 Literature Review 
The foundational prerequisite for black ice formation is maintaining a road surface 

temperature of below freezing. [11] Quantifying this variable is the most challenging 

prospect for models attempting to parameterize black ice without direct measurement of 

road surface conditions. To assist with this task, a multitude of models have been 

developed to diagnose black ice formation risk using both road weather stations and 

meteorological parameterizations. 

Numerous seemingly applicable models have been investigated by the authors, 

only to having been found to require supplementary road surface data. These models are 

wholesomely applicable to situations with RWiS infrastructure, but lie beyond the scope 

and capabilities of the current model. Each model takes its own approach to solving the 

primary issue of resolving influences of road-surface temperatures on black ice formation. 

Sophisticated models based on heat conduction and energy balance have been explored 

by Rayer (1987) and Sass(1992, 1997), but these models are dependent upon vertical 
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profiles of temperature within the roadway. [21][24][25] Efforts to extrapolate road 

conditions to ambient locations without road weather stations have been attempted by 

Bogren et. al. (1992) and Gustavsson and Bogren (1993). [4] 

Shao and Lister (1996) developed a numerical model to solve a road-surface 

energy balance, but required knowledge of the near-surface profile of static stability, 

limiting its applicability to observation systems with enhanced vertical resolution. [26] Of 

note, this radiational model is simplified and used in latter portions of hoar frost 

parameterization for the current model. Crevier and Delage (2001) parameterized road 

surface temperature using a similar energy balance, but with combined input from the 

Global Environmental Multiscale numerical weather prediction model and ambient 

meteorological observation stations. [6] This model is dependent upon knowledge of snow 

coverage and an initial value of road-surface temperatures – both of which are not 

available to the current model. Obviously, without availability of high resolution vertical 

profiles of atmospheric conditions near the surface or RWiS infrastructure, the 

applicability of these road surface temperature models is negated. 

Hewson et al. (1992) and Takle (1990) overcame this issue through development 

of models dependent mostly upon variables measured by common surface observation 

stations (e.g. temperature, wind speed, cloud cover, etc.). These models emphasized the 

effects of radiational cooling on road surface temperatures to accommodate for a lack of 

reliable road temperature observations. Takle’s system incorporated both hoar frost and 

frozen precipitation icing mechanisms, with model output being derived from surface 

thermodynamic and kinematic variables input by a forecaster. [29] Hewson et al. 

combined an intensive literature review with multiple case studies to parameterize hoar 

frost formation using data output by weather observation stations throughout the United 

Kingdom. [11] These two studies were the primary sources of hoar frost parameterization 

for the current model. However, contradictory arguments for various parameters have 

been presented through the remainder of this paper. 

Although the previously discussed studies focus on hoar frost as the primary black 

ice formation mechanism, frozen precipitation and freezing fog also obviously pose a 

significant risk for black ice formation. Gustavsson (1995) indirectly supported freezing 

fog as a prominent icing mechanism. His results suggest deposition resulting from 

freezing fog was more significant than that resulting from hoar frost, given similar initial 

road surface conditions. [9] The authors are not aware of any studies parameterizing 

freezing fog formation, although Tardif et al. (2007) present a sophisticated typological 

analysis for generic fog formation. This typology was crucial to the development of the 

current model’s freezing fog parameterizations, under the assumption fog formation 

mechanisms would be similar during sub-freezing temperatures. This is supported by the 

independence of Rasmussen et al.’s parameterizations from surface temperature. 
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Eriksson and Lindqvist (2001) emphasized the importance of road surface 

temperature on magnitude of impacts resulting from frozen precipitation. They state the 

road surface temperature is the only variable determining ice formation, although the 

sophisticated road observation system used in the study permits such specific 

requirements. As with hoar frost and freezing fog, incorporation of previous 

meteorological conditions conducive to roadway cooling (e.g. previous night radiational 

cooling and/or a preceding period of temperatures below freezing) may attempt to 

accommodate for the lack of road surface temperatures. [29][14] Examination of models 

dependent upon road-surface energy flux supports the idea that, for instances where road 

surface temperatures are above freezing, duration and intensity of frozen precipitation 

events are the most important variables in precipitation related icing. Through latent heat 

effects of melting and net conductive cooling effects of frozen water on surfaces with 

temperatures greater than freezing, road surface temperatures may fall below freezing 

through precipitation influences alone. If road surface temperatures are already below 

freezing, ice will readily form. [6][26][13][28] 

2.3 Current Model Methodology 
The optimal spatiotemporal availability of meteorological data within Oklahoma was 

used in concert with the National Digital Forecast Database (NDFD) to develop a 

diagnostic and prognostic black ice prediction model. The Oklahoma Mesonet offers 120 

automated meteorological observation stations that provide high horizontal resolution of 

relevant meteorological variables. Additionally, the Automated Surface Observing 

Systems (ASOS) and Automated Weather Observing Systems (AWOS) provide 54 

additional stations throughout the state that offer supplementary data in the form of 

vertical profiles of cloud cover and precipitation categorization. Refer to Table 2.1 for 

specific variables used by the Mesonet and ASOS stations in the current model. The 

NDFD is a database of gridded meteorological forecast data, available up to a 5 km 

resolution throughout the contiguous United States. The combination of the Oklahoma 

Mesonet, ASOS/AWOS network, and NDFD gridded forecast database allow for 

wholesome application of previous studies to the development of the diagnostic and 

prognostic black ice prediction model. 

 

Obs. System Variable Temporal Resolution Data Format 

Mesonet 

Temperature 

Relative Humidity 

Wind Speed 

5 minutes 

Magnitude 
Percent 

Magnitude 
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Wind Direction Magnitude 

ASOS/AWOS Precipitation 

Fog Presence 

Cloud Cover 

20 minutes Categorical 

Truth 

Fractional 

Table 2.1: Variables utilized from the Oklahoma Mesonet and ASOS/AWOS network for 
diagnostic risk analysis. 1 

 

Variable Temporal 

Resolution 

Format 

Temperature 

Dewpoint 

Relative Humidity 

Wind Speed 

Wind Direction 

Cloud Cover 

3 hours 

Magnitude 

Magnitude 

Percent 

Magnitude 

Magnitude 

Percent 

QPE 6 hours Magnitude 

Precip. Prob. 12 hours Percent 

Table 2.2: Variables utilized from the National Digital Forecast Database (NDFD) for prognostic 
risk analysis.2 

The NDFD is the sole source of data for the prognostic model. The NDFD is a 

database of gridded forecasts output by National Weather Service Weather Forecast 

Offices, and is a combination of Model Output Statistics data and human judgment. The 

NDFD currently offers data at a maximum grid resolution of 5 km, which is thus the 

resolution used by the current model. The NDFD XML server is accessed via Simple 

Object Access protocol on an hourly basis. A query is first sent to the NDFD for latitude 

and longitude locations of each grid point throughout Oklahoma. The database is then 

queried a second time to obtain forecast data for each individual grid point. The data for 

each individual location is parsed and analyzed for icing risk based on the parameters 

discussed in subsequent sections. Following black ice risk assessment at all grid points, 

the data is interpolated using a nearest neighbor interpolation method based on Delaunay 

triangulation. Please refer to H. Glahn and D. Ruth (2003) for further details. (Figure 2.1) 
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As previously discussed, the spatio-temporal availability throughout Oklahoma 

permits direct analysis of black ice risk from observational data. To ensure all necessary 

meteorological variables for diagnostic black ice risk analysis are available at each 

Mesonet and ASOS site, each Mesonet site is coupled with the closest ASOS station and 

each ASOS station is coupled with the closest Mesonet station. This couples the optimal 

temporal resolution of Mesonet observations with supplementary ASOS data not 

available to Mesonet sites. The specific reasons for this are also discussed in the 

subsequent parameterization section. Following diagnosis of icing risk at each Mesonet 

station, the risk data associated with each station location is, similar to the prognostic 

analysis, interpolated using a nearest neighbor interpolation method based on Delaunay 

triangulation. Please see McPherson et al. (2007) and Brock et. al. (1995) for more details 

on the Oklahoma Mesonet, and the ASOS User Guide [1] for further details. (Figure 2.1) 

 

 

Figure 2.1: Simplified flowchart of procedure for the prognostic and diagnostic risk analyses. 
Refer to section 3 for further discussion on each.1 
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2.4 Meteorological Parameterization 
As previously discussed, Oklahoma current does not have RWiS infrastructure. 

This makes directly determining road surface temperature impossible, and thus 

meteorological parameterization is necessary. The main causes of black ice – hoar frost, 

freezing fog, and frozen precipitation – have all been parameterized accordingly. Frozen 

precipitation risk parameterization was relegated to the atmospheric surface temperature, 

risk of precipitation, and previous day meteorological conditions. Hoar frost risk 

parameterization was entirely de- pendent upon analysis, and subsequent modification 

of, previously successful parametric studies. Freezing fog risk parameterization was 

derived from a sophisticated climatological analysis performed on archived Mesonet and 

ASOS data, guided by the parameters defined in previous fog typological studies such as 

that of Tardif and Rasmussen (2007). Note, there are slight differences between the 

diagnostic and prognostic methodologies of the model relating to differences in data 

availability. For example, ASOS output includes an internalized fog parameterization, 

rendering the complexity of the current model’s fog parameterization unnecessary. 

2.4.1 Prognostic Methodology and Parameterization 
The NDFD Extensive Markup Language (XML) is queried every hour, accessing 

forecast data for variables detailed in Table 2.2. Vapor pressure values are calculated 

using the supplied temperature and dew point data. Each grid point centered within 5-km 

gridded squares is analyzed for hoar frost, precipitation, and fog related black ice risk at 

0, 3, 6, 12, 24, and 48 hours. The prognostic output range was limited to 48 hours to limit 

the effects of progressively increasing NDFD error with increased forecast range. [8] The 

data for the entirety of grid points are then interpolated using a nearest neighbor 

interpolation method based on Delaunay triangulation. 

2.4.2 Hoar Frost 
Hoar frost occurs when ambient water vapor deposits onto the road surface. This 

provides arguably the most dangerous aspect of black ice formation due to the inability 

of the driver to visibly observe the progressive formation of road icing. Furthermore, the 

complexity of depositional processes leads to complications in the parameterization of 

hoar frost formation. 

A multitude of studies parameterizing hoar frost using meteorological data have 

been completed and verified using Road Weather information Systems. [11] [14] [7] In 

turn, this limits the potential negative impacts of being unable to directly verify the 

current model’s hoar frost prediction system. A combination of the work of T. Hewson 

and N. Gait (1992), E. Takle (1990), M. Karlsson (2001), and J. Shao and P. 

Lister(2001) was utilized for the development of the current model. Modifications, 
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discussed and qualified in subsequent portions of this section, have been made to these 

parameterizations. Refer to Table 2.3 for specific hoar frost parameterizations. 

Hoar frost development occurs only when the vapor pressure of the air is greater 

than the saturation vapor pressure of the roadway surface with respect to ice (esi(T)e(T)) 

directly adjacent to the road surface. [11] There are two instances during which this may 

occur: 1) instances of prolonged radiational cooling, and 2) advection of warm, moist air 

over roadways with Tr < 0◦C. [11][14][9] The hoar frost parameterization is therefore 

based on the satisfaction of one of these two explicit requirements. 

Formation 

Mechanism 
Variable Parameterization Risk Index 

Radiationally 

Induced 

Time of Day Sunset < Time < Sunrise Requirement 

Temperature T ≤ 2.8 ◦C Requirement 

Cloud Cover ≤ 2/8 0,1 

Wind Speed 2 m s−1 ≤ WS ≤ 9 m s−1 0,1 

Previous Night 

Conditions 

T ≤ 0 ◦C or CC ≤ 2◦C/8 T ≤ 2.8 
0,1 

Ice Crystal 

Growth Rate 
> 0 0,1 → 2 

Advection 

Induced 

Wind Shift ≥ 45 Requirement 

Temperature 

Increase 
> 0 Requirement 

Dewpoint 

Increase 
> 0 Requirement 

Table 2.3: Prognostic and diagnostic parameterizations of hoar frost for both radiative and 
advective hoar frost formation mechanisms. 3 

Due to the inability to directly quantify the road surface temperatures, radiational 

cooling influences and previous environmental conditions were used to parameterize road 

surface temperature. The importance of radiational cooling on hoarfrost formation was 

indirectly supported by Scherm and Bruggen (1995), who found minimal mid-to-upper 

level clouds to be the most important factor in determining risk of surface condensation, 

given the absence of low-level clouds. Findings of J. Bogren et al. (2006) also support 

this. [4] These conditions are also crucial for rapid radiational cooling of the surface. [16] 
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[18] Furthermore, the influence of previous night environmental conditions on road 

surface temperature was supported by Hewson and Gait (1992), concluding air 

temperatures at or below freezing and minimal cloud cover support cooler temperatures. 

Both of these parameters are directly related to road surface temperatures through 

surface irradiance and environmental conduction. 

Although wind is not conducive to significant near-surface temperature gradients 

due to production of turbulent mixing and breakdown of the near-surface radiational 

inversion, downward mixing of moisture to the radiationally cooling surface is dependent 

upon the presence of near-surface wind generated turbulence. [12] [14] Furthermore, 

near surface turbulence does not fully mitigate cooling of the roadway surface during 

periods of ongoing radiational cooling. To prove the continued cooling of the road surface 

even during instances of near-surface turbulence, a simplified net road-surface 

thermodynamic energy flux may be analyzed. Net thermodynamic energy flux solely due 

to turbulent flux and longwave irradiance may be expressed as: 

Term Variable Units Order of Magnitude 

ϵσT𝑠
4 

  

σ 

Ts 

Dimensionless 

W m−2 K−4 

K 

∼ 1 

∼ 10 

∼ 102 

ρcpCmV Ch(Ta − Ts) 

and 

ρCmV Ch(qa − qs) 

ρ 

Cp 

Cm 

Ch 

V 

𝑇𝑎 − 𝑇𝑠 

𝑞𝑎 − 𝑞𝑠 

kg m−3 

J K−1 kg−1 

Dimensionless 

Dimensionless 
m s−1 

K 

kg kg−1 

~1 

~103 

~10-3 

~10
-3 

~1 

~1 

~10
-4 

Table 2.4: Scales necessary for scale analysis of the road surface energy balance. The first term 
represents longwave irradiance, while the second and third terms represent the sensible and 
latent heat fluxes respectively. [32] [35] Refer to section 4.2 for further details. 4 

 R = −ϵσ𝑇𝑠
4 − 𝐻 − 𝐿𝛼𝐸 (2-1) 

where R is the residual energy, ϵσ𝑇𝑠
4 is the emitted infrared radiation flux (with  being the 

emissivity coefficient, σ the Stefan-Boltzmann constant, and Ts the road surface 

temperature), H is the sensible turbulent heat flux, and LαE is the flux associated with 
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phase changes of water precipitating onto the road surface. [6] The turbulent flux terms 

are expressed as: 

 H = −ρcpCmV Ch(Ta − Ts) (2-2) 

 E = −ρCmV Ch(qa − qs) (2-3) 

where ρ is the density of air, cp is the specific heat of air at constant pressure, V is wind 

speed at 10 meters, Cm and Ch are the surface momentum and moisture transfer 

coefficients respectively, T is temperature, and q is specific humidity (Refer to Delage and 

Girard (1992) for details on Cm and Cd). We may perform a scale analysis on Eqn. 2-1 

using the scales provided in Table 2.4. 

This results in the magnitude of longwave irradiance being on the order of 1 Wm−2, 

sensible turbulent heat flux on the order of 10−1 Wm−2, and latent heat flux on the order of 

10−4 Wm−2. Thus, even with ongoing surface turbulent flux, given the bounds of hoar frost 

wind speed parameterization (2 ms−1 ≤ WS ≤ 9 ms−1), longwave irradiance dominates 

road surface temperature. This leads to R, the residual energy, being negative, signifying 

a loss of energy and cooling of the road surface. 

             Turbulent downward flux of moisture from the ambient environment toward the 

road surface enhances hoar frost production rates. [11] [14] Water vapor from the air layer 

directly adjacent to the road surface deposits, reducing the water content of this air layer. 

Turbulence rapidly mixes this relatively drier air with the more moist environmental air, 

increasing the moisture content of the air adjacent to the road surface (and therefore the 

saturation ratio with respect to ice), enhancing the rate of ice deposition. 

Numerous studies have suggested high dew points (e.g. ≥ -1 degrees Celsius in 

the model of Hewson and Gait (1992)) to be crucial for rapid hoar frost formation. This 

concept is slightly misunderstood. Environments characterized by higher dew point values 

– and thus higher vapor pressure – are able to achieve larger values of supersaturation 

over the roadway given similar road surface temperature. However, the maximum growth 

rate of an ice crystal occurs well below freezing, and is, in fact, maximized at 

approximately -15 C. [27] [23] Ice crystal growth rate may be approximated by: 

 
dM

dt
= 𝜌𝑖2𝜋𝐷(𝑆𝑖 − 1)𝐺𝑖(𝑇, 𝑃) (2-4) 

where 

 𝐺𝑖(𝑇, 𝑃) =
1

𝜌𝑖𝐿𝑠
2

𝑅𝑣𝐾𝑇𝑎
2 +

𝜌𝑖𝑅𝑣𝑇𝑎
𝑒𝑠𝑖𝜓

 (2-5) 

and 

 ψ = 2.11x10−5 (
𝑇

𝑇0
)

1.94
(

𝑝

𝑝0
) (2-6) 
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where ψ is the vapor diffusivity, T0 = 273.15 K, p0 is the pressure at sea level, ρi is the 

density of ice, D is the diameter of the ice crystal, Si is the saturation ratio (e / esi),Ls is the 

latent heat of sublimation, Rv is the gas constant of water vapor, , Ta is the temperature of 

the ambient environment, and esi is the saturation vapor pressure with respect to ice. [27] 

For a given pressure field, the growth rate, dM dt−1 is dependent upon both the 

supersaturation with respect to ice and the temperature of the ambient environment. 

Thus, simplified parameterizations used by previous studies solely based on 

supersaturation are not permissible. Figure 2.2(a) provides a visualization of the growth 

rate to the supersaturation with respect to ice given varied ambient temperature and dew 

point depression conditions. 

To accommodate for this non-linear relationship between ice crystal growth rate 

and temperature, a non-linear risk enhancement was incorporated into the model. In the 

current model, the risk associated with the growth rate of an ice crystal are independent 

of other variables due to the dynamic nature of road surface temperature 

parameterizations. Therefore, the maximum growth rate related risk correlates to the 

highest possible growth rate associated with the air temperature alone. As defined in Eqn. 

2-5 diffusional growth of ice crystals is dependent upon the temperature of the ambient 

environment rather and not the temperature of the ice crystal itself. As such, negligence 

of the road surface temperature parameterizations for the growth-rate parameterization 

are qualified. 

 

 (a) (b) 

Figure 2.2: Depositional/diffusional growth rate for a range of possible dew point depression and 
temperature values for: a) hoar frost, and b) freezing fog. Of note, the dashed line in (b) denotes 
the 88.0 percent relative humidity line. Any region above the line is below 88.0 percent relative 
humidity and thus is not conducive to fog formation. 2 

Variable Parameterization Risk Index 

QPE ≥ 0.0 cm Requirement 
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Temperature ≤ 0 C 1 

Previous 

Day 

Previous 

Night 

T ≤ 0 ◦C 

CC ≤ 2/8 

T ≤ 2.8 ◦C 

1,0 

Table 2.5: Prognostic parameterizations for frozen precipitation. 5 

Of note, Hewson and Gait (1992) and Takle (1990) determined the length of night 

to be of importance for hoar frost development due to the extended period of time during 

which radiative cooling occurred. However, the temporal allowances for this parameter 

were arbitrarily defined using data from a winter characterized by abnormally high near-

surface environmental moisture content. These two factors led the authors to removing 

this parameter from the current model. 

2.4.3 Frozen Precipitation 
Icing risk associated with frozen precipitation is limited to: 1) the ambient 

environmental temperature, 2) the probabilistic and quantitative risks of frozen 

precipitation, and 3) additional parameterization of the road surface temperature through 

preceding conditions. Refer to Table 2.5 for specific prognostic parameterizations of 

frozen precipitation. 

Variable Parameterization Risk Index 

Precipitation Type Frozen 1,0 

Temperature ≤ 0 C 1,0 

Previous 

Day 

Previous 

Night 

T ≤ 0 ◦C 

CC ≤ 2/8 

T ≤ 2.8 ◦C 

1,0 

Table 2.6: Diagnostic parameterizations for frozen precipitation.6 

The risk of precipitation leading to icing of road surfaces characterized by above-

freezing temperatures is largely dependent upon two variables: 1) The latent heat 

associated with freezing or melting of water in contact with the road surface 2) The 

conduction of energy between the frozen precipitation and the roadway.[12][9][4][13] 

These two variables are not quantifiable through the meteorological parameters provided 

through the Mesonet and ASOS networks, but can be accounted for through 
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acknowledgement of precipitation intensity and duration. [4] Unfortunately, the authors 

are not aware of any existent research interpreting precipitation intensity and duration into 

risk parameterization. As such, precipitation duration is directly incorporated into the data 

visualization of the model. 

In further attempt to parameterize the likelihood of precipitation related ice 

formation, preceding environmental conditions were taken into account – as in the hoar 

frost parameterization. [6] Additionally, freezing temperatures concurrent with frozen 

precipitation was deemed to lead to enhanced icing risk. Freezing air temperatures lead 

to progressive cooling of the road surface and enhanced likelihood of liquid water 

freezing. [4] [15] 

2.4.4 Freezing Fog 
The fog typology of Rasmussen et al. is used as the foundation for freezing fog 

parameterization. As defined by Tardif and Rasmussen (2007), the primary fog formation 

mechanisms are: radiationally induced, evaporative, precipitation enhanced/induced, 

advection, cloud base lowering. [23] Refer to Table 2.8 for parameterizations of each fog 

type. 

Parameterization of fog dependence on air moisture content is derived from a 

probability density function of relative humidity data from ASOS and Mesonet archives 

from the years 2000-2012. All cases of fog were documented and relative humidity values 

archived. The non-normal distribution was then normalized through a Box-Cox 

transformation. The BoxCox normalization transformation is defined mathematically as: 

 y = {
𝑥𝜆−1

𝜆
  𝜆 ≠ 0

ln(𝑦𝑖)  𝜆 = 0
 (2-7) 

where λ is varied to ensure the most ideal representation of a normalized distribution. 

Using the transformed distribution, relative humidity values within two standard deviations 

Fog Type Variable Parameterization Risk Index 

All 
Relative Humidity ≥ 88 Requirement 

Relative Humidity > 88 .5 → 1 

Radiation 

Time of Day Sunset < Time < Sunrise Requirement 

Wind Speed ≤ 3.2 ms−1 Requirement 

Wind Speed < 3.2 ms−1 0.5 → 1 

Cloud Cover ≤ 2/8 0,1 
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Cooling dT/dt < 0 C 0,1 

Evaporation 

Time of Day Sunrise < Time <= Sunrise + 60 min. Requirement 

Wind Speed ≤ 3.2 ms−1 Requirement 

Wind Speed < 3.2 ms−1 .5 → 1 

Cloud Cover ≤ 2/8 0,1 

Precipitation 
Previous 

Precipitation 

> 0 cm within period of last RH >85% 
Requirement 

Cloud Base 

Lowering 

Cloud Cover 100 % Requirement 

Relative Humidity Increasing from <100% to 100% Requirement 

Advection Wind Shift ≥ 45 Requirement 

Temperature 

Increase 
> 0 Requirement 

Dewpoint 

Increase 
> 0 Requirement 

Wind Speed ≥ 25 ms-1 Requirement 

Cloud Cover ≥ 75 Requirement 

Table 2.7: Prognostic parameterizations for fog formation mechanisms. 7 

 

Fog Type Variable Parameterization Risk Index 

All ASOS Fog 

Observation 
Yes/No 0,1 

Current 

Temperature 
≤ 0 C 0,1 

Previous 

Day 

Previous 

Night 

T ≤ 0 ◦C 

CC ≤ 2/8 

T ≤ 2.8 ◦C 

1,0 
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Table 2.8: Diagnostic parameterizations for fog formation mechanisms. of the mean were set as 
the requirement for fog formation (e.g. ≥ 97.5 percent of events fell within this range, as defined 
by the Gaussian distribution). The resulting parameterization aligns well with previous research, 
which commonly establish the minimum relative humidity threshold for fog formation at 90%. 
[36] 8 

 Radiation fog occurs only at nighttime, when net energy flux from the surface is 

typically less than zero, and only when outgoing longwave radiation dominates surface 

temperature tendencies. Concurrence of ongoing dominant radiational cooling include the 

coupling of minimal cloud cover and cooling surface temperatures is suggestive of such 

radiational cooling. Additionally, low surface wind speeds minimize turbulence, which 

assists in radiation fog formation. [3] A similar Box-Cox normalization transformation to 

that used for relative humidity was used in the determination of the maximum wind speed 

threshold for radiative fog events. The threshold wind speed of 3.3 ms−1 is slight higher 

than established by previous research (range of 2.0 m/s to 3.0 m/s). [30] [3] [36] Of note, 

the actual risk value assigned to wind speed increases linearly from 0 m s−1 to 3.3 m s−1. 

Although the authors recognize this linear increase in risk is somewhat arbitrary, the 

authors are not aware of any research discussing the linearity of the relationship between 

radiative fog and wind speed. Minimal wind speeds have been associated with enhanced 

radiation fog density, and thus lower wind speeds have been assigned higher risk values. 

[36] [33] 

 The formation mechanisms of evaporation related fog closely resemble those of 

radiatively induced fog. The primary differentiating factor for radiationally induced fog and 

evaporative fog is the realization of air saturation prior to sunrise. [30] Evaporative fog 

occurs when the saturation vapor pressure associated with the temperature of the surface 

of the ground falls to, or below, that of the ambient air, and dew or frost forms on the 

ground surface. This phenomenon is parameterized through an increase in relative 

humidity following sunrise, followed by a decrease in relative humidity as boundary layer 

formation mechanisms begin to dominate the surface layer. Parameterization of 

radiationally induced surface cooling is also crucial to the development of surface dew, 

and is thus also included.[19] 

 Precipitation related fog is only forecastable following precipitation events for the 

current model. During precipitation events, the primary concern resides with frozen 

precipitation freezing on the roadway surface, so this is not a significant limiting factor. 

The enhanced environmental moisture content during precipitation events does not 

always lead to fog formation, and thus high relative humidity forecasts output by NDFD 

are not necessarily correlated with precipitation related fog risk for the current model. As 

such, given enhanced surface moisture following a precipitation event with no further 

precipitation falling, the risk of precipitation related fog is introduced by the model. [31] 

[30] 
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 Cloud-base-lowering fog is dependent upon a present low-level cloud deck. 

Through subsidence coupled with low level moistening and/or cooling, or just simply low 

level moistening through moisture flux or cooling, a progressive lowering of the cloud deck 

occurs. [30][3][15] This was parameterized through a present cloud deck with progressive 

moistening of the surface. Subsidence cannot be parameterized by the current model due 

to data availability limitations, but the progressive moistening of the surface resulting from 

the lowering of a cloud base would be captured by NDFD output. This leads to subsidence 

related boundary layer moistening being indirectly parameterized. 

Advection fog is primarily characterized by a significant wind shift associated with 

a frontal zone and/or thermodynamic boundary. Warm, moist air is advected over a cooler 

surface, resulting in turbulent mixing of cooler air with warmer air aloft, and eventual 

saturation. Low level cloud cover is commonly present immediately prior to formation. [9] 

Low level cloud cover is an indicator of depth of low-level moisture, which is implicative 

of sustainability of fog. Enhanced turbulence commonly present during advective fog 

necessitates a deep near-surface layer of moisture to limit entrainment of dry air into the 

developing fog. As such, low level cloud cover is parameterized as conducive to fog 

formation during instances of warm, moist advection. [2] [22] 

2.4.5 Diagnostic Methodologies 
The extraordinary spatio-temporal resolution of meteorological observations 

across Oklahoma permits the highest resolution black ice formation parameterization 

diagnostic model to date. The Oklahoma Mesonet provides live meteorological data within 

five to ten minutes of observation, while ASOS stations provide data every twenty 

minutes. [17] Furthermore, the spatial resolution of the Oklahoma Mesonet provides an 

average grid resolution of approximately 40 km, far surpassing resolution of previous 

attempts based on centralized forecast and observation stations (e.g. Takle (1990) and 

Rayer(1987)). The spatial resolution of forecasting sites was cited as the primary limiting 

factor of these studies. Although both the Oklahoma Mesonet and ASOS observation 

networks provide the necessary variables for ice formation diagnosis, the superior 

maintenance and quality control measures of the Oklahoma Mesonet support its 

applicability to the horizontal resolving of the atmosphere. However, the Oklahoma 

Mesonet does not measure cloud cover and is limited in frozen precipitation measurement 

capabilities, of which the ASOS observations provide support with precipitation typology 

and vertical profiles of cloud cover. The Mesonet uses unheated tipping-bucket rain 

gauges to quantify precipitation, which are inapplicable for live qualitative analysis of 

frozen precipitation events. [5] Therefore, ASOS precipitation observations are crucial to 

the ability to analyze potential frozen precipitation related icing events. 

To ensure availability of all meteorological variables necessary for black ice risk 

diagnosis, each Mesonet station is paired with the nearest ASOS station based on simple 

linear distance. Figure 2.3 provides a visualization for the spatial resolution of the 

coupling. 
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Due to the ASOS network’s ability to indirectly observe precipitation and fog events 

(see the ASOS User Guide [1] for details on methodologies), the ASOS network is used 

as the primary mechanism for diagnosing freezing fog and frozen precipitation events. 

Should an ASOS station observe ongoing fog, freezing fog, or precipitation, the Mesonet 

stations paired with that individual ASOS station are checked for temperatures at or below 

freezing. 

If the temperature is at or below freezing, the location of the Mesonet station is 

flagged for ice occurrence. For precipitation related events, if the ASOS station 

categorizes the precipitation to be of frozen nature (e.g. snow, sleet, or freezing rain) but 

the ambient Mesonet stations determine the temperature to be above freezing, then a 

cautionary risk is displayed at the respective Mesonet locations. 

Hoar frost depends primarily upon meteorological variables measured most 

frequently by Mesonet stations (refer to section 4.2 for discussion). As such, Mesonet 

locations are utilized as the primary mechanism of hoar frost diagnosis, with ASOS 

stations providing supplementary cloud cover data. Cloud cover observations for each 

Mesonet station are derived from the output of each station’s respective paired ASOS 

station. 

 

Figure 2.3: A visualization of the coupling of Mesonet sites with ASOS/AWOS stations. 3 
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2.5 Summary 
Although ice related automobile crashes lead to billions of dollars in financial 

losses and thousands of lives lost each year, the United States has yet to develop a 

comprehensive black ice forecasting model. Black ice prediction models based on Road 

Weather information Systems (RWiS) have been implemented in numerous nations 

throughout Europe. Through retrospective analysis, multiple studies have developed 

meteorological parameterizations of black ice formation. 

The current study aims to develop a diagnostic and prognostic model to assist in 

the prevention of black ice related impacts on societal infrastructure. Although the United 

States does not have as sophisticated of RWiS infrastructure, the elaborate surface 

meteorological network permits high resolution diagnostic capabilities. Additionally, the 

National Weather Service offers prognostic data – through the National Digital Forecast 

Database – with the entirety of variables available necessary for black ice formation 

forecasting. The developed model synchronizes both sources to provide a 

comprehensive warning system for the state of Oklahoma. This model offers prognostic 

data on a 5 kilometer grid - the highest resolution model currently available. 

The current model is limited by the lack of road surface observation network 

throughout the United States. The parameterizations can not be directly verified, and must 

solely be supported through previous research. Modifications could plausibly be made to 

the current model should verification mechanisms become available. Additionally, road 

surface observation stations would supplement provided meteorological 

parameterizations, and supply a source of road surface temperature initialization. This 

would both limit necessary parameterizations, and reduce the risk of false alarms. 
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3. Development of GIS Database and GIS-based Interface for 
Ice Emergencies  

3.1 Introduction 
 

In this task, we acquires various data sets that could be used in supporting road 
closure decision-making under black ice emergencies. The data collection effort includes 
both spatial and non-spatial data that could be used in the analysis process.   

 
A geographic information system (GIS) database is then designed and established 

to efficiently store and manage the acquired data sets. The GIS database is used to 
support visual and spatial analyses related to road closure decisions in black ice 
emergencies. 

 
Then a custom GIS interface is developed to support visual and spatial analysis for 

making road closure decisions under black ice emergencies. A custom toolset with add-
in tools is created in ArcGIS to help emergency management officers comprehend the 
data produced from the black ice prediction module and examine how the predicted black 
ice event will affect the roads, bridges and local communities. The toolset can help identify 
roads/bridges that are within the predicted black ice zones and likely to have black ice 
forming on the surface and shall be closed to prevent potential accidents and life losses. 

 
The custom toolset is developed with ArcObjects in the .NET development 

environment. ArcObjects is a library of Component Object Model (COM) components 
which build the basis of ArcGIS. It can be used to customize the ArcGIS Desktop 
applications, or to build standalone GIS applications. In this project, the add-in tool 
approach with ArcObjects is chosen to create the custom application tools. An add-in 
toolbar is developed to support visual and spatial analysis for road closure decisions 
under black ice emergency scenarios. The toolbar contains four different add-in tools: 
visual analysis tool, interpolation and animation tool, decision support analysis tool, and 
sensor feedback tool. 

3.2 Acquisition of Data Sets Related to Road Closure Decisions under 
Black Ice Emergencies 
 

Several key data sources are identified by the research team for data acquisition. 
These sources include the Bureau of Transportation Statistics (BTS), the U.S. Census 
Bureau, and the U.S. Geological Survey (USGS). 

 
The following data sets are acquired from the corresponding data sources: 
 

 Road network. The road network used in this project is acquired from two major 
sources. The Bureau of Transportation Statistics (BTS), which is associated with 
the Research and Innovative Technology Administration (RITA), produces and 
maintains the National Transportation Atlas Database (NTAD) 
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(http://www.bts.gov/publications/). The NTAD contains a National Highway 
Planning Network (NHPN) data set, which is a comprehensive network data set of 
the nation’s major highways, including rural arterials, urban principal arterials and 
all national highway system routes. The NHPN data set in the 2013 release of 
NTAD database is acquired and the highways in the state of Oklahoma are 
extracted to represent the major roads in the state. The U.S. Census Bureau 
provides a series of TIGER (Topologically Integrated Geographic Encoding and 
Referencing) products and the TIGER/Line Shapefiles 
(https://www.census.gov/geo/maps-data/data/tiger-line.html) include a secondary 
roads layer, which has detailed roads at the street level for each state. The 
secondary roads data set for Oklahoma from the 2013 TIGER/Line Shapefiles is 
downloaded and used to show the detailed roads in the state. 
 

 Bridges. The NTAD database of BTS also includes a National Bridge Inventory 
(NBI) data set. The NBI file contains all the bridges located on the major highways 
with their attribute information, including year built, deck condition ranking, length, 
the type and name of the road the bridge sits on, etc. The NBI data set from the 
2013 NTAD is obtained and used to represent the bridges in Oklahoma. 
 

 Boundary lines. The 2013 TIGER/Line Shapefiles also contain boundaries of a 
certain level of legal entities. As defined by the U.S. Census Bureau (2013), a legal 
entity is “a geographic entity whose boundaries, name, origin, and area description 
result from charters, laws, treaties, or other administrative or governmental action”. 
Several boundary line files for Oklahoma, including state, county, census tract, 
census block group, and census block, are selected and downloaded from the 
above source. 
 

 Demographic data. Population count data at the census block level is collected 
from the U.S. Census website for the entire Oklahoma 
(https://www.census.gov/topics/population.html). There are over 270,000 census 
blocks in Oklahoma. The data set contains the total population count and 
population count by race for each census block. This data set is used to show the 
distribution of people in relation to the road network.  
 

 Elevation data. The USGS provides the digital elevation model (DEM) data for the 
entire national. The seamless National Elevation Dataset (NED) covers the United 
States at a 10-meter resolution national wide (http://ned.usgs.gov/). The DEM data 
for Oklahoma is obtained and can be used to identify and evaluate the roads and 
bridges that are prone to forming black ice. A total of 36 tiles of NED raster data 
covering the territory of Oklahoma were downloaded from the USGS website. The 
total size of the files is around 20GB. The data is distributed with the North 
American Datum of 1983 (NAD 1983) and the elevation values are referenced to 
North American Vertical Datum of 1988 (NAVD1988). The resolution of the data is 
1/3 arc-second (approximately 10 meters) in horizontal direction and 1 meter in 
vertical direction. 

 

http://www.bts.gov/publications/
https://www.census.gov/geo/maps-data/data/tiger-line.html
https://www.census.gov/topics/population.html
http://ned.usgs.gov/
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3.3 Management of Acquired Data Sets in a GIS Database  
 

As the acquired data sets are from different sources, they are also in different 
formats and using different spatial referencing systems. In order to efficiently manage the 
data sets and use them to support visual and spatial analyses in this project, we need to 
organize the data sets in an integrated database. A GIS database, which can manage 
both spatial and non-spatial data, presents a logical solution to the data management 
needs in the project. 

 
In this project, an Esri (Environmental Systems Research Institute) ArcGIS 10.1 

geodatabase file is created and used as the GIS database to store and manage all the 
data sets. The geodatabase file is capable of handling data in different formats, including 
spatial data in both raster and vector formats, and non-spatial data in tables. The acquired 
data sets are processed and imported to the created geodatabase. A screenshot of the 
established ArcGIS geodatabase file for this project is included in Figure 3.1. This figure 
provides an overview of the GIS database structure and shows how all the data sets are 
stored and organized in the database.  

 
 

Figure 3.1 The structure of the black ice database 4 

As shown in the figure, the spatial data sets in this project are managed with two 
types of ArcGIS datasets: Feature Datasets and Raster Mosaic Datasets. According to 
Esri’s definition, an ArcGIS Feature Dataset is a collection of feature classes as well as 
other types of vector datasets such as feature-linked annotations, network dataset and 
topologies, while a Raster Mosaic Dataset is a data model used to organize a collection 
of raster datasets (e.g., images, digital elevation model data) which will be stored as a 
catalog and viewed as a whole image (ArcGIS 10.1 Resource Center).  

 
In this project, vector spatial data (e.g., administrative boundaries, roads, bridges) 

are grouped and organized into several feature datasets distinguished by their theme and 
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usage in the database. Each feature dataset may contain multiple feature classes and all 
feature classes in the same feature dataset share the same spatial references, including 
spatial extend and map projection. Three feature datasets are established in the 
database. 

 

 The Boundaries feature dataset contains five feature classes, each of which 
representing the geographic boundaries of a certain level of legal entities, 
including the state of Oklahoma, counties, census tracts, census block 
groups, and census blocks in Oklahoma. These feature classes are created 
by importing the obtained boundaries files in the TIGER/Line Shapefiles 
format. Demographic data, including total population count and population 
count by racial groups, are attached to these feature classes as attributes 
by joining the boundary file with their corresponding census population data 
file. Figure 3.2 shows the visual representation of the five feature classes 
included in this feature dataset. 
 

   
Figure 3.2 “Boundaries” Feature Dataset 5 

 The Roads_and_Bridges feature dataset is comprised of two linear feature 
classes representing two road networks in Oklahoma at different levels of 
details as well as a point feature class representing the central locations of 
Oklahoma bridges. The “Major_NHPN2013” feature class is derived from the 
NHPN data set in the 2013 NTAD released by the Bureau of Transportation 
Statistics. This major road network contains all Oklahoma principle arterials 
and rural minor arterials.  The “Secondary_Tiger2013” feature class is a 

much more detailed road network, including secondary road, local 
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neighborhood road, rural road, city street, vehicular trail, ramp, service drive, 
walkway, stairway, private road for service vehicles, parking lot road, and 
bike path. As indicated in the name, this feature class is developed from the 
road layer in the obtained 2013 Tiger/Line Shapefiles database. The 
“Bridges_NBI2013” feature class is generated by importing the Oklahoma 
bridge points included in the NBI dataset in the 2013 NTAD database. Figure 
3.3 shows the spatial relationship of the three feature classes. 
 

 
Figure 3.3 “Roads_and_Bridges” Feature Dataset 6 

 

 The CaseStudy_Tulsa feature dataset contains a variety of geographic data 
in Tulsa County (see Figure 3.4), which is used as a case study area in this 
project to test-run the decision support system. This dataset contains five 
feature classes. The “Tulsa_County” feature class is the geographic 
boundary of Tulsa County, which is a subset of the “Counties_OK” feature 
class in the “Boundaries” feature dataset.  The “Major_Tulsa”, 
“Secondary_Tulsa”, and “Bridges _Tulsa” are the subsets of the 
“Major_NHPN2013”, “Secondary_Tiger2013”, and “Bridges_NBI2013”  in 
the “Roads_and_Bridges” feature dataset respectively. They are created by 
clipping the two roads feature classes and the bridge feature class by the 
geographic boundary of Tulsa County. “SampleSensor” is a point feature 
class representing the locations of the black ice sensors. As the real sensor 
location data is not readily available at the moment, a set of hypothetical 
locations of sensors are generated by randomly selecting 200 points from 
the Tulsa Bridge feature class. 
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Figure 3.4 “CaseStudy_Tulsa” Feature Dataset 7 

In addition to the feature datasets, a NED_Mosaic raster mosaic dataset is 
established to manage raster datasets in the GIS database. The raster mosaic dataset 
approach allows us to effectively organize the 36 tiles of elevation raster data sets that 
cover the entire territory of Oklahoma and create an integrated view of the terrain of the 
state. As shown in Figure 3.5, the raster mosaic dataset provides a seamless terrain 
representation of Oklahoma at a 1/3 arc-second (about 10-meter) resolution. 

 

3.4 Visual Analysis Add-in Tool  
 
The visual analysis add-in tool implements several methods to help emergency 

officers comprehend the potential impacts of a black ice event. These methods include 
interactive viewing of maps composed of different data layers (e.g., Oklahoma terrain 
layer, different levels of administrative boundaries and road networks) to enhance the 
understanding of the characteristics and impacts of a black ice event. 
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Figure 3.5 “NED_Mosaic” Mosaic Dataset 8 

 
Figure 3.6 is the screenshot of the interface of the visual analysis add-in tool. The 

tool controls the visibility of nine map layers in the map view. The interface contains three 
groups of checkboxes. When the checkboxes under the “Administrative Boundaries” 
group are selected /deselected, the geographic extent of Oklahoma State, Counties, 
Census Tracts, Census Block Groups and Census Blocks will be shown/hidden in the 
map window. The checkboxes under “Transportation Networks” group control the visibility 
of the major/secondary road network and bridges in Oklahoma. When the “National 
Elevation Data” checkbox is checked, the terrain layer of Oklahoma will be displayed in 
the map window. 

 
Users can use this interface to control which layer or layer combinations to view 

on the map and find a set of data layers that can help them better comprehend the impacts 
of the predicted black ice event. 
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Figure 3.6 Interface of the Black Ice Visual Analysis Add-in Tool 9 

3.5 Interpolation and Animation Add-in Tool  
 

The interpolation and animation tool includes two components. The interpolation 

tool converts the sequence of black ice prediction files in text format to a sequence of GIS 

datasets in raster format that can be used to visually demonstrate the spatial distribution 

of the predicted Black Ice Risk Index (BIRI) values and to overlay with the roads/bridges 

feature classes to extract the road segments/bridges that are under black ice threats. The 

animation component is designed for temporal visualization of the development of the 

black ice event by displaying raster datasets created from the interpolation tool. 

 

Figure 3.7 Interface of the Black-ice-risk-index Interpolation Add-in Tool 10 
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Figure 3.7 shows a screenshot of the interpolation and animation add-in tool 

interface. The components of this tool can be divided into two function groups: 

interpolation and animation. 

The “interpolation” tab is used to convert the black ice risk index files in .cvs format 

into GIS files in raster format so that the black ice prediction data can be used to overlay 

with the roads and bridges dataset for intersect/clip analysis. This interpolation function 

automatically loads in the predicted BIRI datasets (e.g., a set of black ice live event data 

comprised of 8 .cvs datasets representing the likelihood of the occurrence of black ice 

events in Oklahoma at one hour interval from UTC 02/01/2010 00:00:00 AM to 

UTC02/01/2010 07:00:00AM was used here) at different times, generates point features 

based on the latitude and longitude information in the BIRI datasets, projects the point 

features from WGS84 geographic coordinate system to NAD83_Lambert Conformal 

Conic projected coordinate system and then interpolates the projected point features into 

raster datasets. The whole process starts when users click on the “Start” button.  The 

system will display a “done” message every time when the process of a specific time layer 

has been completed. Two parameters can be set by users. The first one is the time 

interval, which controls how long the next BIRI dataset will be loaded and processed after 

the previous one is finished. For example, if a user enters 30 in the time interval textbox, 

the BIRI data of 02/01/2010 01:00:00 AM will not be processed until 30 seconds after the 

process of the BIRI data of 02/01/2010 00:00:00 AM has completed. The other parameter 

allows users to set the directory and prefix of the results so the users can easily locate 

results. 

The flow chart in Figure 3.8 illustrates the logical steps used in this add-in tool to 

convert the .cvs files into point features and interpolate the raster datasets from the point 

features. According to the flow chart, when users click the “Start” button, it will trigger the 

process. A BIRI .csv file is loaded into the system. Based on the longitude and latitude 

information in the .csv file, a make-xy-event operation is applied to the .csv file to create 

a point feature class. So far the point feature class contains only geographic coordinate 

system (WGS 1984), for the .csv files do not contain projection information. In order to 

line up the point feature class with roads/bridges, it is then reprojected to NAD 1983 

Contiguous Lambert conformal conic projected coordinate system. 

Once the re-projection process is finished, the “create Tin from feature” and 

“convert Tin to Raster” operations will be applied to convert the points to raster datasets. 

When carrying out the “convert Tin to Raster” approach, “natural neighbors” conversion 

method is selected based on the information provided by the OU team. The same process 

is repeated for all predicted BIRI data at other time instances to create the corresponding 

BIRI raster datasets. 
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The “Animation” tab is used to visualize how a black ice event dynamically 

develops through time. In this function, the output raster datasets of the “interpolation” tab 

are used to demonstrate the development. When the “start” button is clicked, the 

animation of the development will be displayed in the map window and the label on top 

of this tab will update with the corresponding timestamp. When the “Pause” or “Stop” 

button is clicked, the animation will be temporally paused or terminated. 

 

Figure 3.8 Flow Chart of BIRI Interpolation Tool Design 11 
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3.6 Decision Support (Spatial Analysis) Add-in Tool  
 

The decision support analysis add-in tool combines the predicted black ice raster 

dataset (the output of the interpolation tool) and the road networks to identify 

roads/bridges that will be under potential black ice threats as well as the sample sensors 

that should be able to detect black ice event. 

The tool automatically loads in the predicted black ice raster datasets (the output 

of the interpolation add-in tool) at different times, delineate the potential black ice warning 

area, and overlay the area with the road network to identify the road segments and 

sensors that under threats. Figure 3.9 is a screenshot of the interface of the spatial 

analysis add-in tool. Similar with the interpolation tool, the whole process of this tool also 

starts when users click the “Start” button. The system will also display a “done” message 

every time when the process of a specific time layer has been completed. Three 

parameters, black ice extent, time interval and the path and prefix of the results, can be 

set by users. The combobox at the top of the window allows the users to define black ice 

risk area according to the level of the predicted black ice event. There are four items in 

the combobox: mild, moderate, serious and extreme which respectively correspond to 

“>1”, “>2”, “>3” and “>4”of the black ice risk index. 

 

Figure 3.9 Interface of the Spatial Analysis Add-in Tool 12 
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The flow chart in Figure 3.10 shows the logical steps used in this add-in tool to 

extract the potential black ice warning areas and road segments and bridges along with 

the sensors in the potential black ice warning areas. 

 

Figure 3.10 Flow Chart of Spatial Analysis Tool Design 13 

According to the flow chart, when users click the “Start” button, it will trigger the 

process. The BIRI raster dataset (the output of the interpolation add-in tool) is loaded into 

the system. The values in this raster layer are floats ranging from 0 to 5. Based on a pre-

defined threshold value (mild, medium, serious and extreme), reclassification operation 

is applied to this layer to create a new raster dataset, which only has 1s (if the BIRI value 

is equal to or larger than the threshold value) and 0s (if the BIRI value is less than the 
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threshold value). The cells having a value 1 represent the area threatened by the potential 

black ice event.  The reclassified raster dataset is then converted into a feature class 

through the “Raster to Feature Class” operation. This feature class inherits the value of 

the reclassified return period dataset and the areas with a value 1 are used to delineate 

the black ice warning zone. In the next step, two operations are carried out to extract 

black ice warning zones: “select value = 1” creating a selection of the reclassified feature 

class containing all polygons whose values equal 1 and “export selection” exporting the 

selection into a separate feature class. The exported feature class is the black ice zone 

dataset.  

Once the flooding zone dataset is available, the road networks, bridges and the 

sample sensors feature classes are loaded into the system and intersected (for roads) or 

clipped (for bridges and sensors) with the black ice zone dataset. This intersect/clip 

operation generates the final output of the tool, including road segments, bridges and 

sample sensors that are within the black ice zone. The same process is repeated for all 

predicted BIRI raster layers at other time instances to create the corresponding road 

closure suggestion. 

3.7 Sensor Feedback Add-in Tool  
 

The sensor feedback add-in tool reads the feedback from the Ice-Detection-

Sensor-module, which provides the IDs of on-site sensors that have detected black ice 

event, and displays the locations of the on-site sensors so that emergency management 

officers are able to compare the prediction results with the observation results. 

The tool automatically loads in the feedback .txt files containing the IDs of Sensors 

that have detected black ice at different times, select the sample sensors that have 

identical ID values with the ones in the feedback file, and export the selections as new 

point feature classes. Figure 3.11 is a screenshot of the interface of the feedback add-in 

tool. Similar with the interpolation tool, the whole process of this tool also starts when 

users click the “Start” button. The system will display a “done” message every time when 

the process of a specific time layer has been completed. 
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Figure 3.11 Interface of the sensor feedback add-in tool 14 

 

Reference 

[1] U.S. Census Bureau, 2013. Technical Documentation: 2013 Tiger Line/Shapefiles. 

http://www.census.gov/geo/maps-data/data/pdfs/tiger/tgrshp2013/TGRSHP2013_TechDoc.pdf 

[2] ArcGIS 10.1 Resource Center:  

http://resources.arcgis.com/en/help/main/10.1/index.html 

  

http://www.census.gov/geo/maps-data/data/pdfs/tiger/tgrshp2013/TGRSHP2013_TechDoc.pdf
http://resources.arcgis.com/en/help/main/10.1/index.html
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4 Development of Conductivity-Based Ice Sensors  
 

4.1 Sensor Selections 
 

The major criteria for selecting black ice sensor include easy-to-uses, rigid, and 
low-cost. After comparing several ice detection techniques, an electrical conductivity 
sensors (EC) was selected. Other sensors are either more expensive or not rigid for hash 
outdoor environment. The EC sensors have been commonly used to measure leaf 
wetness and frost condition. The sensor output is non-linear with a rapid decrease in 
resistance relative to an increase in wetness. The sensor costs only around $2 and needs 
very simple signal conditioning circuit to connect to a datalogger. Figure 4.1 shows the 
selected sensor and its signal conditioning circuit.  

    

    
 

 

 

(a)                                                                                       (b) 

 

(c) 

Figure 4.1 Selected Black-ice Sensor: (a) electrical-conductivity black-ice sensor; (b) Signal 
conditioning circuit for the selected sensor (Campbell Scientific, 2010); (c) Wiring diagram for 

sensor connection with a datalogger 15 

In Figure 1(b) and 1(c), Rs is the resistor varied with the wetness of the sensor 
surface. When wetness increases, the resistor will decrease. The excitation was set to 
5V during the experiment. From the circuit, the sensor output, Vice, can be calculated 
using Eqn. 4-1: 

𝑉𝑖𝑐𝑒 =
𝑅2

𝑅𝑠+𝑅1
𝑉𝐸𝑋 =

1

100+𝑅𝑠
× 5 =

5

100+𝑅𝑠
 (𝑉)  (4-1) 

Hence, the sensor output voltage will be high when the surface is wet and low when the 
surface is dry (e.g. possible ice formation). However, it is not possible to confirm ice 
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formation with only the selected sensor. A thermocouple temperature sensor which, a 
low-cost sensor, was added to justify the ice formation situation.  

 

4.2 Preliminary Tests on the Selected Black Ice Sensor  
To verify the sensor performance, several tests were conducted under lad 

condition. The test platform included a freezer, a humidifier, three thermocouple sensors, 
two humidity sensors, two selected sensors, three fans, a Campbell Scientific datalogger, 
a control box, a concrete sample, and an asphalt sample. The control box had two relays 
circuit to control the ON/OFF of the freezer and the humidifier, respectively. The freezer 
would be on until the air temperature insider the freezer was below -10°C. The two 
humidity sensors were installed on the concrete and the asphalt, respectively. The 
humidifier would be turned off if the saturation humidity on any one of the humidity sensors 
was reached. The three thermocouple sensors were used to monitor the temperature 
changes in the air, on the surface of concrete, and on the surface of asphalt inside the 
freezer. Three fans were kept on during the test to generate uniform distribution of 
humidity inside the freezer. Each sensor were mounted on a frame to allow a 45° 
inclination from the concrete/asphalt surface. This was to avoid any accumulation of 
water, dust, mud, or other objects on sensor surface to affect the sensor reading. Figure 
4.2 shows the test platform. Figure 4.3 shows the components outside of the freezer.  

 

(a) 
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(b) 
  

Figure 4.2 Lab test platform: (a) a photo of test setup (b) a wiring diagram of the test platform16 

   

 

 

 

 

 

 

 

 

Figure 4.3 Other components of test platform  17 
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1. Temperature variation monitoring 

Goal: To verify the performance of temperature measurements  

Test condition: Freezer was turned on during the test. 

Data collection: A data file was collected by the datalogger including three 
temperatures. The sampling interval was set at every 30 seconds. The humidifier was 
turned on until the air temperature readings was below zero. 

Results: Figure 4.4 shows the results of temperature measurements. The 
temperature dramatically changed at the beginning of the experiment and gradually 
decreased with time. The air temperature was well below those on the surface of the 
concrete/asphalt, but with same trend. Hence, the temperature sensor should be 
installed close to the surface of the road.  

 

Figure 4.4. Temperature changes during the initial test 18 

2. Ice formation monitoring 

Goal: To verify if the selected sensor would react when ice was formed.  

Test condition: Freezer was turned on during the test. The humidifier was on until 
the air temperature reached below 0°C 

Data collection: A data file was collected including three temperatures and two ice 
sensor outputs. The sampling interval was set at every 30 seconds.  

Results: Figure 4.5 shows the results of ice sensor tests. During the test, the freezer 
was opened multiple times to examine if ice was formed on the wetness sensor and 
the surface of pavement samples. Thus, the temperature changed in a sinusoid 
pattern throughout the experiment. The ice on the asphalt surface was examined 
manually and found that after No.136 data point, the surface was icy. The ice was 
considerable thick at the manual observation and could confirm that the rise of the 
readings indicated the ice formation. The selected ice sensor provided relative stable 
readings after ice was formed. However, due to the disturbance of opening the freezer 
and the saturation of humidity inside the freezer, the 190-210 readings had a big 
changes. 
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(a) 

 

 
(b) 

 
Figure 4.5. Results from the selected sensor tests: (a) Temperature readings; (b) Outputs of 

selected ice sensors 19 

3. Temperature effect on the selected ice sensor 

Goal: To verify that the selected sensor output would not change with surrounding 
temperature changes.   

Test conditions: The freezer was on during the test. The fans and the humidifier 
remained off. Two selected ice sensors were placed inside the freezer, one on 
concrete and another on Asphalt  

Results: When the freezer was turned on, the inside temperature started decreasing. 
The results showed that the output of the black sensor had minimum variations with 
temperature as shown in Figure 4.6.   
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Figure 4.6 Test results on the selected ice sensor output vs. temperature 20 

4. Test on black ice formation with temperature, humidity, and selected black ice 
sensors. 

Goal: To seek an approach to precisely measure the black ice formation with 
integrated information of temperature, humidity and the output of selected black ice 
sensor 

Test conditions: The freezer, the humidifier, and the three fans were turned on from 
the beginning of the test. The humidity level were maintained at the saturation.  

Results: During the test, the humidity increased from 50% (2500mV) to 98% 
(4900mV) and stayed at the same level throughout the experiment. As the 
temperature decreased, wet vapor inside the freezer started to condense. More water 
drops were formed on the black ice sensor which led to the increase of the sensor 
readings. When the temperature reached below zero, the black ice sensor output 
started decrease sharply due to partial ice formation. The more ice formed, the slower 
the decrease of black ice sensor output. The result also shows that the black ice was 
formed at different time on asphalt and concrete. This was due to the distances 
between the humidifier and the sensors respectively and non-uniform distribution of 
water vapor insider the freezer. Further tests were conducted to verify this 
observation.  At around -4°C, a thin layer of ice was formed on the black sensors. The 
black ice sensor output reached a steady state (Figure 4.7). Hence, with a 
collaboration of a temperature sensor and the proposed black ice sensor, the black 
ice formation could be measured. 
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(a) 

 

(b) 

 

(c) 

 
Figure 4.7 Test results with integrated information of (a) Temperature profile; (b) humidity 

profile; and (c) the selected black-ice sensor outputs 21 
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4.3 Performance Tests on the Integrated Black Ice Formation Sensing 
and Warning System 

The integrated black ice formation sensing and warning system was tested under 

lab condition with the test platform. Two group of tests were conducted with different 

goals. 

Test group 1: Repeated tests were conducted to study the behavior of the two 

sensors and determine the conditions indicating the ice formation. Figure 4.8 shows an 

example of the data from test group 1.  

 

Figure 4.8 An example of the data from test group 1 22 

If humidity was available, the output of the selected sensor would increase. If the 

temperature kept dropping below 0°C, ice on the surface of the sensor started forming. 

When the output of the ice sensor dropped from its maximum for about 38mV and the 

temperature was below -3°C,   ice formation fully on the sensor surface was concluded. 

Repeated tests were conducted which gave very similar results. Hence, these two 

conditions were then used to control the warning unit.    

Test group 2: Repeated tests were conducted to verify the functions of ice 

formation sensing and the warning control. Figure 4.9 shows a flow chart of the 

datalogger control program. The value in the condition to turn on the warning light could 

be changes through roadside collaboration. Figure 4.10 provides an example of data 

collected from the developed system. The warning light was on when the ice formation 

signal was given.   
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Figure 4.9 Flow chart of the datalogger control program 23 

Figure 4.10 An example of the data from test group 2 24 
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5. Development of Piezoelectric Ice Sensor System 

5.1 Background 

 Piezoelectric materials such as dielectric crystals, ceramic, and plastic materials 
generate electrical charge by converting the mechanical activity (i.e. a vibration) to an 
electrical field. Vice versa, they could also generate a mechanical movement when 
excited by the electrical charges [4]. The heart of the piezoelectricity’s ability to generate 
electricity is from the dipoles formed by the positive and negative ions. In static state, 
these ion charges are balanced due to the symmetry of the crystal structure. With an 
excitation from any mechanical movement, the crystal structure is deformed. Because the 
symmetry is lost, the differences in ion charges cause an electric filed across the crystal 
[4]. 

 The piezoelectric materials are commonly known to be used in a detection of 
pressure variations such as a microphone, and ultrasonic transducers, or creating sounds 
with excitation from electricity such as a buzzer. In the latter application, the transducer 
could be forced to vibrate at the maximum vibration amplitude by applying an alternating 
current (AC) at transducer’s natural frequency. The resonance frequency, f, can be 
expressed as a function of a mass, m, and a stiffness, k, as shown in the equation below 
[5]: 

𝑓 =  
1

2𝜋
√

𝑘

𝑚
 

 According to the equation above, the resonant frequency, f, will be directly 
correlate with the stiffness, k, of the piezoelectric transducer whereas the mass, m, would 
be inversely proportional to f. With this assumption, naturally, when placing the 
piezoelectric transducer in air state, the resonance frequency could be arbitrarily 
calculated as fair. Next, if we place the same piezoelectric transducer in water, the 
effective stiffness of the piezoelectric transducer due to the adhesion between water and 
its surface will be negligible [6]. The resonance frequency in this case would be affected 
by the effective mass of the piezoelectric transducer and water. Thus, the new resonance 
frequency, fwater, should decrease (fair < fwater). Next, in the case where the piezoelectric 
transducer surrounded by the ice (i.e. by placing the transducer in the water then 
decrease a temperature below freezing point), with the same water mass comparing to 
the previous case, when the water constantly changing its state to ice, the stiffness will 
also constantly increase. At the point where the ice film surrounding the transducer 
surface is thick enough, the effective stiffness of the system will increase to the point 
where the stiffness dominate the quantity of mass in the equation, resulting in increasing 
resonance frequency (fice > fwater > fair).  
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Using these properties, we conducted experiments to verify whether the properties 
hold in other piezoelectric transducers. The piezoelectric transducer used in this 
experiment is model 7BB-20-6L0 from muRata as shown in Figure 5.1 and an experiment 
was set up as shown in Figure 5.2 below. 

 
Figure 5.1 A piezoelectric transducer model 7BB-20-6L0 from muRata (Image reproduced from 

www.sparkfun.com) 25 

 

 
Figure 5.2 Circuit diagram used to test the piezoelectric transducer characteristics 26 

As shown in Figure 5.2, a test environement has been set up by modifying a 
refridgerator in the way that we can monitor the ice formation in a container. Beside the 
piezoelectric transducer, we also implemented temperature sensors, and humidity sensor 
to monitor freezer and container surface’s temperatures, and freezer’s air humidity. The 
circuits required for operating the sensors were designed and implemented on the 
breadboard. The output of the sensors were fed to Xbee transmission module and 
transmitted wirelessly to the receiver module at the remote computer for data collection 
and analysis. The wireless data acquisition from the sensors and Xbee module was 
tested. Matlab is the main software used for data collection and analysis. Regarding to 
[6], the authors explained how they were able to distinguish the air, water, and ice 

http://www.sparkfun.com/
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environment from the piezoelectric transducer outputs. The inputs of the piezoelectric 
transducer were fixed-amplitude (Vp-p) sinusoidal signals with different frequencies. The 
outputs will be the same-frequency sinusoidal signal but the phase and amplitude may 
be different from the original inputs based on the power used to excite the piezoelectric 
transducer itself (electrical power to vibration power). Again, we expected that the 
accumulation of water mass on the piezoelectric transducer surface would decrease the 
resonant frequency from its nominal value. In the case of ice accumulated on piezoelectric 
transducer surface, the effective stiffness of the piezoelectric transducer will increase 
proportionally to the ice thickness causing the resonant frequency to increase.  

The piezoelectric transducer was placed into a container in the freezer in different 
conditions, water, and ice. We manually varied the frequency of input sinusoidal signal 
from 1 kHz to 100 kHz using a function generator and monitored the output of the 
piezoelectric transducer using an oscilloscope. The result confirmed that the output 
characteristic profiles of the piezoelectric transducer in different environment conditions, 
in this case, water, and ice, are different. However, since some output frequencies of 
sinusoidal signal range in the relatively high frequencies (10 kHz - 100 kHz), the speed 
of Xbee’s analog to digital converter (ADC) would not be sufficient to digitize the signal. 
To solve this problem, we designed the circuit to convert sinusoidal output which is an 
alternating current (AC) to a direct current (DC) and monitored the changing in amplitude 
of the DC output. The plots of the outputs from the different frequency inputs in water and 
ice are shown in Figure 5.3 and 5.4 respectively. 

 

Figure 5.3 Characteristic profile of the output amplitude when placing the piezo in water 27 
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Figure 5.4 Characteristic profile of the output amplitude when placing the piezo in ice (thickness 
of 0.5 cm) 28 

As seen from Figure 5.3, the maximum output response of the piezoelectric 
transducer occurs at the resonance frequency around 4 kHz of the sinusoidal input in the 
water environment. Then, the output amplitutes alternate in the frequency range of 4-10 
kHz due to the harmonic responses. Once the input frequency was further increased after 
around 14 kHz, the output amplitudes increase rapidly and proportionally to the input 
frequency. Differently, as mentioned before, the accumulation of ice around the 
piezoelectric transducer would increase its resonance frequency. The result shown in 
Figure 5.4 supports the assumption very well. In stead of having a drastic peak as in water 
environment case, the output amplitude constantly increases proportionally with the input 
frequency right from the start freuquency at 1 kHz. This is because the resonance 
frequency of the piezoelectric transducer was shifted to higher frequency due to 
increasing of stiffness by the ice acuumulation around the piezoelectric transducer. Based 
on the differences in these two profiles, we should be able to further develop the system 
and statistical models to automatically distinquish the condition where the piezoelectric 
transducer was placed. Our current work focuses on conducting extensive tests to extract 
accurate classification criterias, and developing an electronic sensing system with 
integrated software for ice sensing. 
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Figure 5.5 Overall system design of an automatic air, water, and ice detection system 29 

5.2 System Design 
 Although we have proved that the concept of using a piezoelectric transducer to 
distinguish between water and ice states is valid. The next consideration is how to design 
the whole working system to be automatic, compact, and low-cost. It is impossible to have 
a person operating a full size function generator and oscilloscope in this particular 
application on the real site. With those constrains, we chose all electrical components 
which are low-cost yet reliable. All electrical components used in the design of an 
automatic air, water, and ice detection system are shown in Figure 5.5. To automate the 
process, we coded the Arduino to periodically generate square waves with frequencies 
ranging from 1 kHz to 100 kHz. The input frequencies will change discretely with the 
resolution of 1 kHz. The total time for each signal cycle (1 – 100 kHz) is approximately 22 
seconds. These inputs were fed to a piezoelectric transducer which will be installed at the 
monitoring point. The original output from the piezoelectric transducer is relayed to a full-
bridge rectifier to convert a square wave output (alternating current) to an equivalent RMS 
value (direct current) due to many reasons. First, to digitize the signal with a very high 
frequency (maximum at 100 kHz in this case), the sophisticate electrical component such 
as a microcontroller is needed. This will introduce more power consumption and less 
reliability of the system. Second, the change of the equivalent RMS value respecting to 
time which really is the focused signal used for the analysis is quite slow (maximum 
frequency less than 5 Hz). To save a transmission bandwidth and space needed for data 
storage, we choose to use a built-in digitizer either from Xbee transceiver or a data logger 
with a sampling frequency of 20 Hz. Then, these digitized data will be sent to a data 
storage and/or data analysis point either through wireless communication by Xbee 
transceiver or wire communication through a data logger. After the prototype of the 
system was built on a test board, we tested our concept by collecting the data from 
piezoelectric transducer in different states (air, water, and ice). The plots of each output 
pattern from each state are shown in Figure 6. From the Figure, it is clear that the signal 
patterns from the output of the piezoelectric transducer in different states are different 
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which suggests that we could use these output signals to classify the environment states. 
The analysis to classify a current state (air, water, or ice) may be done in real-time or by 
a periodic inquiry. Since all consideration about the hardware development was clarified, 
we will go through all data analysis and classification models development after this 
section. The data preprocessing process will be depicted in the next section.  

 
Figure 5.6 The piezoelectric transducer’s output response profiles 30 

 

5.3 Data Preprocessing 
 The transmitted data from the sensing point to a storage/analysis point has always 
been contaminated by interference signals. To capture only the wanted signal, the 
interference signals should be filtered out. The filtering process in this case takes two 
steps. First, interferences from a digitizing process of the Xbee transceiver cause some 
data samples to sharply drop its value to zero (i.e. abruptly changes from 1.5 V to 0 
immediately in the next sample, then comes back to 1.5 V again in the next value). We 
designed the simple filtering process to check the rate of change of each output sample 

(
𝑑𝑦

𝑑𝑡
). The spurious data point with the rate of change from previous sample to the next 

value more than a specific threshold would be replaced by the value of the previous 
sample. The second step, from experiments, we found that the highest frequency 
characteristics of the output is around 1 Hz. Thus, the digital low-pass filter designed with 
an order of 300 and a cutoff frequency at 1 Hz is used for this filtering process. After these 
two steps, the data is normalized to range of (-1,1) with a zero mean. Finally, the data is 
clean and ready to be used in next section. 



50 
 

5.4 Feature Extraction 
 In this section, we will explain how the useful information from a piezoelectric 
transducer output (equivalent RMS value) is extracted and used for training classifier 
models before they could be used to differentiate environment states (air, water, or ice). 
We consider extracting features from two categories, time domain, and frequency 
domain.  

In time domain, the assumption made is that each statistics of outputs from 
different input frequencies is different in each environment states (air, water, or ice). We 
calculate several statistics quantifications from each output segment that corresponding 
to each input frequency. For example, one input cycle accounts for 100 input frequency 
signal. Because the input frequency changes discretely with the resolution of 1 kHz in 
approximately 0.22 second for each level, if we can find the start and stop points of each 
input cycle, we can segment each output cycle to 100 segments corresponding to 100 
input frequencies. (In our case, we also coded the Arduino to generate the signal that let 
us know the start and stop point of each input cycle.) The first output segment is the 
output from the square wave input with a frequency of 1 kHz and so on. We compute 
basic statistics namely, local average, local maxima, local minima, variance, and standard 
deviation of the data from each segment. Also, we fit the simple regression model and 
use its parameters namely, interception, and slope from the data from each segment as 
features. Next, the last feature is a frequency category of the input itself. Finally, there are 
8 time domain features to be used in a modeling process. 
 For frequency domain feature extraction, we extract mel-scale frequency cepstral 
coefficient (MFCC) [7, 8] which is a standard feature set used in speech recognition 
application. In this case, we consider using a data length of 2 minutes or 2400 samples 
to extract MFCC features. The procedure is as followed. First, the data frame of 2400 
samples is divided into segment by a sliding window technique for a suitable data length 
for a Discrete Fourier transform. In our case, we use a data length of 512 points with the 
overlapping of 40 points so that one data frame is segmented into 5 segments with the 
length of 512 points each. Next, we perform a Fast Fourier transform (FFT) to obtain the 
magnitude frequency response of each frame. Then, the magnitude frequency response 
is multiplied by a set of 50 triangular band-pass filters in order to obtain the log energy 
from each band-pass filter. Each filter has a pass-band bandwidth of 0.04 Hz and an 
overlap bandwidth with the previous filter for 0.02 Hz as shown in Figure 5.7 below. 
 

Finally, we perform a discrete cosine transform (DCT) to the log energy of each 
band in order to transform the data in the frequency domain back into the time domain in 
the expression of a finite sequence of data points in terms of a sum of cosine functions 
oscillating at different frequencies. Finally, we have 50 frequency features to be used for 
an appropriate modeling technique which will be explained in the next section. 
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Figure 5.7 The triangular filter bank used for extracting frequency domain features 31 

5.5 Classifier Development Methodologies 
 Before the features from both time and frequency domain could be used to train 
classification models, the class label must be assigned to each feature set or vector 
because we use the supervised learning classification methods. Practically, the data 
collected in different states (air, water, and ice) equally for eight hours were used in a 
training process. The features extract from each dataset will be accompany by the class 
number assigned to each state, Air: 1, Water: 2, and Ice: 3. From the preliminary analysis, 
the results suggest that two classifiers which are k-nearest neighbor and Gaussian 
mixture model work well in this application. 

5.6 K-Nearest Neighbor 
 The k-nearest neighbor (kNN) is a nonparametric pattern classification method. It 
is a simple technique that the classification of a new feature set is performed by assigning 
them to the class which has the distance closest to them in the feature space. To be 
specific, the new feature set will be treated as a center of a circle sphere in N dimensional 
feature space (number of N depending on how many features used). The radius of the 
sphere will increase until there are k neighbors within the sphere. Finally, that new feature 
set will be classified to a class that has most frequent samples in the sphere. In our 
application, for this classifier, the time domain features tend to be good predictors in this 
case. However, using all 8 time domain features in this classification method will introduce 
a need of a very high computation power when classifies each new feature set since the 
distance of the new feature set will be calculated as a Euclidian distance in eight 
multidimensional feature space. To avoid the aforementioned problem, we perform a 
principle component analysis (PCA) to transform all features to three principle 
components (PC) and use these three PCs in a classification process. To represent the 
clustering behavior of the sensor outputs in different environments, the three dimensional 
plot from the most three important principle components is shown in Figure 5.8. 
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Figure 5.8 Three dimensional cluster plot of the sensor output’s features from ice and water 32 

In this plot, for an ice state, a green circle represents the point where the model 
could correctly classify the ice state and a red square represents the point where the 
model wrongly classify the ice state (predict as water or air state but the actual state is 
ice). Likewise, the cyan triangle in the plot represents the correctly classified water state 
and the blue star represents the point where the model classified the state as an ice but 
the actual state is air or water. To represent the air state, the yellow diamond is used 
where the model correctly classifies the air state from the observed output and the black 
hexagon shows where the model wrongly classifies the events as other states (water or 
ice). The cluster of each state clearly differentiates themselves from the others. 
Especially, the features from the ice state are clustered in a distance from the other two. 
Although, the data from water and air states seem to cluster closely to each other, there 
is a clear gap between the two clusters so that they could be discriminated properly. 
Again, since this plot is in 3 dimensions, it might not be enough to demonstrate the 
behaviors of the outputs in higher dimensions. The scatter points whose distances are so 
far from the cluster of each state in the left side of the plot are very good example in this 
case.  

To implement this method, we split the data into two sets, training and validation, 
in the ratio of 80% and 20% respectively. The training dataset is used for searching for 
best parameters for the classification model. Then, these parameters are then used in the 
validation dataset to see the performance in the real world data. The result of the off-line 
classification performance from this method is shown below: 

Training model: Accuracy rate: 97.74 %, Sensitivity: 99.07%, and Specificity: 96.99%. 
Validation model: Accuracy rate: 97.62 %, Sensitivity: 98.55%, and Specificity: 97.35%. 



53 
 

5.7 Gaussian Mixture Model 
Gaussian mixture model (GMM) is a parametric probability density function 

represented as a weighted sum of M Gaussian component densities as given by the 
equation [9]: 

𝑝(𝑥|𝜆) =  ∑ 𝑤𝑖𝑔(𝑥|𝜇𝑖, Σ𝑖)

𝑀

𝑖=1

 

Where x is a D-dimensional continuous data vector, 𝑤𝑖, i=1,…,M, are mixture weights, 
and 𝑔(𝑥|𝜇𝑖, Σ𝑖) , i=1,…,M, are Gaussian component densities. Each component density 
is a D-variate Gaussian function in a form of [9]: 

𝑔(𝑥|𝜇𝑖, Σ𝑖) =
1

(2𝜋)𝐷/2|Σ𝑖|1/2
exp {−

1

2
(𝑥 − 𝜇𝑖)′Σ𝑖

−1
(𝑥 − 𝜇𝑖)} 

Each unimodal Gaussian densities, 𝑔(𝑥|𝜇𝑖, Σ𝑖), is parameterized by a mean D x 1 vector 
𝜇𝑖 and a D x D covariance matrix Σ𝑖. Also, the mixture weights satisfy the constraint that 
∑ 𝑤𝑖

𝑀
𝑖=1 = 1. Thus, the complete Gaussian mixture model is parameterized by mean 

vectors, covariance matrices, and mixture weights from all component densities. These 

parameters are denoted as: 𝜆 = {𝑤𝑖, 𝜇𝑖, Σ𝑖}, 𝑖 = 1, … , 𝑀. Intuitively, a GMM assumes that 
the distribution of the observed data is a combination of a mixture of several Gaussian 
distributions. Each individual distribution or mixture component may have different mean 
and variance. Some distributions may contribute more or less in the combination so that 
they are given the different weight in which their summation is equal to one. Thus, the 
final distribution could be obtained by multiplying each mixture component by its assigned 
weight then adding them together.  

 In this application, we assume that mean vectors, and covariance matrices are 
different for each feature set in each environment state (air, water, and ice). To classify a 
new feature set into each class, we estimate a maximum likelihood using the iterative 
expectation-maximization (EM) algorithm looking for the best match between the trained 
parameters of known classes and the new parameters of an unknown class. The EM 
algorithm iteratively refines the GMM parameters to monotonically increase the likelihood 
of the estimated model for the unknown class feature set. In each step of the algorithm, 
the unknown parameters are updated to their conditional maximum likelihood values. 
Finally, after some iterations, the parameter values converge to a local optimum. For test 

feature vectors, X={x1,…,xT}, the log-likelihood of a trained model 𝜆 could be computed 
as [10]: 

log 𝑝(𝑋|𝜆) = ∑ log 𝑝 (𝑥𝑡|𝜆)

𝑇

𝑡=1

 

To classify the test feature vector, the log-likelihood of each trained model derived from 
features of each environment state (air, water, and ice) and unknown class test feature 
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vector is computed then compared. The test feature vector will be classified into a class 
that gives the maximum log-likelihood computed previously. In our application, the result 
from experiments suggested that the optimum number of mixture component is ten. We 
have implemented this method to the data used in previous method and the performance 
of the GMM on the validation dataset is: 

 Accuracy on ‘Air’ status classification: 96.77 % 
 Accuracy on ‘Water’ status classification: 98.59 % 
 Accuracy on ‘Ice’ status classification: 97.87 % 

Each classification event for KNN is based on the data collected for 2 minutes, 
unlike in GMM method where the classification of the new feature set could be done in a 
fraction of a second. However, we found that the KNN modeling method uses very 
intensive computations (takes couple minutes) when making each classification 
(prediction). Since our aim in this application is to predict the environment state (air, water, 
or ice) in real-time, GMM is the better choice in this case. 

 

Figure 5.9 A hardware prototype set up with built-in Xbee socket and ability to connect to a data 
logger CR850 from Campbell Scientific 33 

 

Figure 5.10 A screenshot of a real-time prediction software implemented in Matlab 34 
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5.8 Real-time Implementation Result 
 After the GMM classifier was developed, we combined the hardware prototype 
shown in Figure 5.9 and a real-time classification software (coded in Matlab) for testing 
in laboratory environment. The screenshot of a real-time prediction software is shown in 
Figure 5.10. The status screen shows the real-time output of the piezoelectric transducer 
with the prediction status that is updated every 2 minutes. 

 To make sure that the system could perform properly, we tested our system in the 
environment where the humidity and temperature were manipulated as close to the real 
“black ice” forming environment as possible. The scenario for forming the “black ice” is as 
followed: 1) the freezer is turned on to decrease the temperature constantly and will 
maintain the temperature at - 6 Celsius 2) the humidifier is also turned on in order to 
saturate the environment humidity (humidity close to 99% at all time). This scenario will 
surely create the invisible and very thin ice which is publicly called “black ice” on the 
surface of every object in the freezer. Comparing to previous experiments when we 
collected the data for training a model, we put the piezo sensor directly in a water-filled 
container in a freezer then let the ice form around the piezo sensor. The experiment setup 
is shown in Figure 5.11. 

 
Figure 5.11 Environment and sensor set-up for the experiments 35 

As seen from Figure 5.11, the piezoelectric transducer was placed as close to the 
concrete’s surface as possible to eliminate the humidity and temperature differences. 
After all the hardware setup was in place, we close the freezer’s door and let the ice form. 
The experiment was carried on for more than 8 hours to ensure that the thin layer of ice 
will surely form on every object’s surface. With the results from previous experiments, the 
ice will be surely formed (noticeable) in the setup environment within 5 hours. The data 
collection and environment state prediction had been carried on simultaneously in real-
time every 2 minute. Each prediction was performed based on the collected data length 
of the last 2 minutes. As shown in Figure 5.12, the first ice state prediction was reported 
at 14:32 which was around 4 hours from the start time. The environmental status at this 
time is: air temperature -0.247 Celsius, concrete temperature 2.324 Celsius, and humidity 
is 99.26%. Then, the prediction results were reported as alternating states between water 
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and ice states, with one false negative of air state in-between. Finally, the prediction 
results were steadily reported as ice states stating from 15:42 which was around 5 hours 
from the start time. The environmental status at this time is: air temperature -3.488 
Celsius, concrete temperature -0.178 Celsius, and humidity is 99.26%. After that point, 
the prediction results were only ice states until the end of the experiment. 

 
Figure 5.12 State prediction result from the piezo sensor and current model 36 

 

5.9 Summary 
The present work has demonstrated a novel approach for real-time detection of 

ice formation on roadways. The physical principle of the detection approach is based on 
discerning elastic stiffness and compliance changes associated with phase 
transformations. Key outcomes of the present work are summarized as follows: 

1. Of-the-shelf piezoelectric sensors, microprocessors and low-power wireless 
modules were employed to develop a cost-effective sensing unit capable 
discerning the stiffness changes. 

2. The sensor was tested using a laboratory test-bed available in the Sensor 
Networks and Complex Systems (COMMSENS) research lab at the Oklahoma 
State University. Signals from the wireless unit were processed at the base station 
computer for ice detection on different substrate materials pertinent to road 
highways.  

3. Several alternative statistical classification approaches were investigated, and the 
experimental studies suggest that a Gaussian Mixture Model (GMM) would be best 
suited for real-time detection of ice formation with adequate sensitivity and 
specificity (all > 90% under tested conditions).  
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4. These investigations point to the viability of employing cost-effective roadside 
sensors for real-time detection of ice formation. Such an approach can drastically 
reduce the cost of installation and operation of a black-ice detection system.  

5. Based on these results, we recommend additional laboratory studies involving 
phase transformations of water with different pH (and additives), on different 
substrates (concrete versus tar, with different surface topographies). Additionally, 
field tests on 2-3 bridges would be necessary to fully analyze the performance of 
the new approach. 
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6. Development of the Remote Control Module 
 
We developed a Road Closure Control Module. The Control Module will receive 

data from field sensors and send signals to turn on the warning lights of the roads and 
the bridges that are prone to forming black ice on the surface to prevent potential 
accidents and life losses. 
 

Each wireless icing sensor and controller node consists of a radio depending on 
the distances from a nearby office. The radio will be used for communication between the 
datalogger at the sensing location. This will provide global wireless access to the sensor 
data via the Internet. A computer at Oklahoma State University (OSU) is configured as 
an FTP server as well as a Web server to receive, store, display, and manage the data. 
 

The warning devices are designed to receive the control signal and other 
information from the DSS through their embedded radio modems. In the case that 
electricity is not available in the region, the warning devices will be powered by solar 
panels and batteries. The research team has built a sample warning device to 
demonstrate the functions of DSS.  

 

6.1 The Integrated Black Ice Formation Sensing and Warning System 
Figure 6.1 shows the overall architecture of the integrated black ice formation 

sensing and warning system, including a sensing unit, a warning unit, and a control unit. 

1. Sensing unit: 

The sensing system consists of a black ice sensor and a thermocouple. The important 
merit of this design is to simplify the configuration with low cost. The thermocouple 
sensor was mounted on the surface of the selected black ice sensor. The outputs of 
both sensors were sent to a datalogger to retrieve the analog voltage signals.    

2. Warning unit: 

A sharp LED warning light is controlled by the datalogger through the following 
conditions: 

- If the black ice sensor detects ice formation, the warning light will be turned on with 
the permission from the central server.  

- The warning light can also be turned on/off remotely by the commands from the 
central server, regardless of the sensor’s output. This mode is only used in 
emergent situations or to test the status of the device.  

3. Control unit: 

The control unit consists of a datalogger which is used to collect the data from sensors, 

control the warning light, and communicate with the central server through radios. The 

system program can be remotely uploaded to the datalogger from a server. The data 

collected by the datalogger can be remotely send to the server based on a preset 

schedule.   
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4. Power unit 

The sensor and the datalogger is powered by a rechargeable battery pack inside the 

datalogger. A solar charging circuit can be added when needed.   

 

Figure 6.1 Overall architecture of the integrated black ice formation sensing and warning system 
37 

6.2 Network for Remote Control Module  
Figure 6.2 shows the current network structure between a remote station and a 

base station (central server) through 2.4GHz radio communications. Multiple remote 

stations could be added to the network with simple configurations of a pre-assigned 

address. The radio used in the system is a 2.4 spread spectrum radio from Campbell 

scientific Inc. It supports pointed-to-point and point-to-multipoint communication. With the 

0 dBd, ½-wave whip antenna, the radio can transmit data reliably within a short distance 

(<50m). In the deployment of the development system, a directional high-gain antenna 

can be used for longer distance transmission.     

The server can send signals to the datalogger(s) and collect data from every 
datalogger. In addition, under certain situation, the server could send command to turn 
on/off the warning light remotely.   

 

A water-proof enclosure is selected to deploy the remote stations in outdoor 

environment. The integrated black-ice warning system is housed inside the enclosure and 

can be connected with selected solar panel for charging when needed (Figure 6.3). 
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Figure 6.2 Network architecture of the develop black-ice warning system 38 

 

 

Figure 6.3 Water-proof enclosure for the remote station 39 
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6.3 Road Closure Control Module at the Central Server 

A computer connected with a radio module is configured as a central server to 
receive, store, display, and manage the data. If an alarm signal needs to be issued, the 
central server can send a command to the on-site sensor package through the network 
to signal the warning.    

The interface of the Road Closure Control Module is shown in Figure 6.4. There 
are two control modes: manual control and automatic control.  

 

Figure 6.4 Interface of the Road Closure Control Module 40 

Automatic control: The automatic control function will be turned on by clicking 
the “Start Monitoring” button. By calling the GIS Spatial Database, the Road Closure 
Control Module can identify the road segments where black ice is predicted. In the site 
window, the color of the sites with black ice warnings will change to orange. Then the 
server will communicate with the dataloggers on those road segments. Meanwhile, the 
Data Log window will show to which sites the server has sent the warning and if the lights 
have been turned on. 

Then, the data from the ice sensors and the temperature sensors on those road 
segments will be collected. Once both of the ice formation and temperature thresholds 
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are satisfied, the Road Closure Control Module will turn on the warning lights 
automatically. If the black ice warnings for the road segments are cleared, the Road 
Closure Control Module will turn off the warning lights.  

By clicking the “Stop Monitor” button, the system will stop monitoring the GIS 
Spatial Database and the remote sites, and all the warning lights will be turned off as well. 

Manual control: As shown in Figure 6.5, by selecting the sites from the site 
window and then clicking the “View Status” button, the system will start to collect the data 
from the checked sites. The data collected will be shown in the Data Log window, and the 
warning status will be displayed in the site window. After clicking the “View Status” button, 
if the light of a selected site is on, the status in the site window will become “Alarm On”. 
The system will also output the address of the sites where the lights are on and depict 
those sites to the GIS map. 

 

Figure 6.5 View the status of site a and d by clicking “View Status” button 41 

If an officer wants to turn on/off the light of a remote site based on his decision, it 
can easily be done by clicking the “Warning On” and “Warning Off” buttons, as seen in 
Figure 6.6.  Meanwhile, the “Warning On” button can also be used to test if a remote light 
works appropriately.  
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Figure 6.6 Turn on the light of site d by clicking “Warning On” button 42 

 

 

.  

 

 


	Final Report SPR2249_1217 March 1 first two pages b.pdf
	SI* (MODERN METRIC) CONVERSION FACTORS
	1. Executive Summary
	2. Development of a Black Ice Prediction Model
	2.1 Introduction
	2.2 Literature Review
	2.3 Current Model Methodology
	2.4 Meteorological Parameterization
	2.4.1 Prognostic Methodology and Parameterization
	2.4.2 Hoar Frost
	2.4.3 Frozen Precipitation
	2.4.4 Freezing Fog
	2.4.5 Diagnostic Methodologies

	2.5 Summary

	3. Development of GIS Database and GIS-based Interface for Ice Emergencies
	3.1 Introduction
	3.2 Acquisition of Data Sets Related to Road Closure Decisions under Black Ice Emergencies
	3.3 Management of Acquired Data Sets in a GIS Database
	3.4 Visual Analysis Add-in Tool
	3.5 Interpolation and Animation Add-in Tool
	3.6 Decision Support (Spatial Analysis) Add-in Tool
	3.7 Sensor Feedback Add-in Tool

	4 Development of Conductivity-Based Ice Sensors
	4.1 Sensor Selections
	4.2 Preliminary Tests on the Selected Black Ice Sensor
	4.3 Performance Tests on the Integrated Black Ice Formation Sensing and Warning System

	5. Development of Piezoelectric Ice Sensor System
	5.1 Background
	5.2 System Design
	5.3 Data Preprocessing
	5.4 Feature Extraction
	5.5 Classifier Development Methodologies

	5.6 K-Nearest Neighbor
	5.7 Gaussian Mixture Model
	5.8 Real-time Implementation Result
	5.9 Summary

	6. Development of the Remote Control Module
	6.1 The Integrated Black Ice Formation Sensing and Warning System
	6.2 Network for Remote Control Module
	6.3 Road Closure Control Module at the Central Server


	ODOT SPR 2249 ODOT Cover March 31.pdf
	Oklahoma Department of Transportation 

	200 NE 21st Street, Oklahoma City, OK 73105-3204

	Materials and Research Division

	Research & Implementation

	Implementation of Research

	for Transportation Excellence 

	spr@odot.org

	Final Report SPR2249_1217 March 1 pages added.pdf
	Final Report SPR2249_1217 March 1 first two pages b.pdf
	SI* (MODERN METRIC) CONVERSION FACTORS
	1. Executive Summary
	2. Development of a Black Ice Prediction Model
	2.1 Introduction
	2.2 Literature Review
	2.3 Current Model Methodology
	2.4 Meteorological Parameterization
	2.4.1 Prognostic Methodology and Parameterization
	2.4.2 Hoar Frost
	2.4.3 Frozen Precipitation
	2.4.4 Freezing Fog
	2.4.5 Diagnostic Methodologies

	2.5 Summary

	3. Development of GIS Database and GIS-based Interface for Ice Emergencies
	3.1 Introduction
	3.2 Acquisition of Data Sets Related to Road Closure Decisions under Black Ice Emergencies
	3.3 Management of Acquired Data Sets in a GIS Database
	3.4 Visual Analysis Add-in Tool
	3.5 Interpolation and Animation Add-in Tool
	3.6 Decision Support (Spatial Analysis) Add-in Tool
	3.7 Sensor Feedback Add-in Tool

	4 Development of Conductivity-Based Ice Sensors
	4.1 Sensor Selections
	4.2 Preliminary Tests on the Selected Black Ice Sensor
	4.3 Performance Tests on the Integrated Black Ice Formation Sensing and Warning System

	5. Development of Piezoelectric Ice Sensor System
	5.1 Background
	5.2 System Design
	5.3 Data Preprocessing
	5.4 Feature Extraction
	5.5 Classifier Development Methodologies

	5.6 K-Nearest Neighbor
	5.7 Gaussian Mixture Model
	5.8 Real-time Implementation Result
	5.9 Summary

	6. Development of the Remote Control Module
	6.1 The Integrated Black Ice Formation Sensing and Warning System
	6.2 Network for Remote Control Module
	6.3 Road Closure Control Module at the Central Server


	FY14_2249_Liu_FinalReport March 1.pdf





